Exclusive production of hadron pairs in two-photon interactions

B.Echenard on behalf of the L3 Collaboration

DPNC, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland e-mail: bertrand.echenard@cern.ch

Received: 06 October 2003 / Accepted: 10 October 2003 / Published Online: 23 October 2003 – © Springer-Verlag / Società Italiana di Fisica 2003

Abstract. The knowledge of two-photon processes increased during the last years thanks to the large sample of $e^+e^- \rightarrow e^+e^-$ hadrons events collected at LEP. Non perturbative QCD phenomena are investigated through the study of exclusive meson and baryon pair production. The cross sections are measured as a function of the $\gamma\gamma$ center-of-mass energy, $W_{\gamma\gamma}$, and the center-of-mass production angle of the hadron, θ^* . Exclusive $\rho^0\rho^0$ and $\rho^+\rho^-$ production for quasi-real photons are investigated through a spin-parity-helicity analysis. Exclusive $\rho^0\rho^0$ production is also studied as a function of the photon virtuality Q^2 and compared to recent QCD predictions.

PACS. 13.66Bc Hadron production in e^+e^- interactions

1 Exclusive pion and kaon pair production

Based on the hard scattering approach developed by Brodsky and Lepage [1], predictions have been made for the production of meson pairs in two-photon interactions. In this formalism, the process is factorized into a perturbative $\gamma\gamma \rightarrow q\bar{q}$ amplitude and a non-perturbative part described by the quark distribution functions of the meson. The $\gamma\gamma \rightarrow \pi^+\pi^-$ and $\gamma\gamma \rightarrow K^+K^-$ reactions have been studied by the ALEPH Collaboration [2] for $|\cos\theta^*| < 0.6$. The shape of the cross sections are well reproduced by the theoretical predictions but the data have a significantly higher normalization, as shown in Fig. 1 for the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction. The QCD predictions are calculated using the hard scattering approach with a distribution amplitude set to its asymptotic form [2]. A fit to

Fig. 1. The $\gamma \gamma \rightarrow \pi^+ \pi^-$ cross section as a function of $W_{\gamma \gamma}$ with the previous measurement of TPC/2 γ [3], the QCD prediction and the fit described in the text

the data with a power law function AW^{-6} gives a value $A = 200 \pm 40$ for pions and $A = 220 \pm 40$ for kaons. The ratio $\sigma(\gamma\gamma \to K^+K^-)/\sigma(\gamma\gamma \to \pi^+\pi^-)$ is thus compatible with one, in complete disagreement with the theoretical prediction of 2.2. Another approach, the so called handbag model [4], has been recently proposed to describe meson pair production. In this model, the process amplitude is factorized into a hard $\gamma\gamma \to q\bar{q}$ subprocess and form factors describing the soft $q\bar{q} \to meson$ antimeson transition. Absolute prediction for the $\gamma\gamma \to \pi^+\pi^-$ and $\gamma\gamma \to K^+K^-$ cross sections are not available, since input data from other channels are needed. However, the ratio $\sigma(\gamma\gamma \to K^+K^-)/\sigma(\gamma\gamma \to \pi^+\pi^-)$ is predicted to be close to one, in agreement with the data. The observed angular distribution is also reproduced by these calculations.

EPJ C direct

electronic only

2 Exclusive baryon pair production

Using the same hard scattering approach, predictions have been made for baryon pair production. However, such calculations with three-quark distribution functions [5,6] failed to reproduce early $\gamma \gamma \rightarrow p \overline{p}$ measurements [7]. The quark-diquark model [8] was proposed as a possible way to model non-perturbative effects through the use of diquarks, a bound state of two quarks inside the baryon. The handbag model was also adapted to describe baryon pair production[9]. Using flavour symmetry, predictions for the members of the baryon octet can be obtained once the $\gamma \gamma \rightarrow p \overline{p}$ cross section is measured. The $\gamma \gamma \rightarrow p \overline{p}$ reaction has been measured as a function of $W_{\gamma\gamma}$ for $|\cos\theta^*| < 0.6$ by the L3 [10] and OPAL [11] Collaborations. The calculations of the three-quark model [5] are found to be about an order of magnitude below the measurement, whereas

Fig. 2. a The differential $\gamma\gamma \rightarrow p\overline{p}$ cross sections as a function of $|\cos \theta^*|$ for 2.1 GeV $< W_{\gamma\gamma} < 2.5$ GeV and **b** for 3.0 GeV $< W_{\gamma\gamma} < 4.5$ GeV with the diquark model prediction

the recent quark-diquark predictions [12] describe the data much better. The differential cross sections are also studied in three different mass intervals: 2.1 GeV $\langle W_{\gamma\gamma} \rangle < 2.5$ GeV, 2.5 GeV $\langle W_{\gamma\gamma} \rangle < 3$ GeV and 3 GeV $\langle W_{\gamma\gamma} \rangle < 4.5$ GeV. The low mass and high mass distributions are displayed in Fig. 2 as example. A distinctive difference is observed between the three distributions. No prediction is available for the quark-diquark model below 2.5 GeV, but the data in this region have a qualitatively different behaviour to the diquark prediction above $W_{\gamma\gamma} = 3$ GeV, as it is strongly peaked at large angles. The intermediate region exhibits a rather flat dependence, which partially agrees with the model predictions. The forward peaking behaviour of the differential cross section in the high mass interval is well reproduced by the quark-diquark model.

interval is well reproduced by the quark-diquark model. The $\gamma\gamma \rightarrow \Lambda \overline{\Lambda}, \ \gamma\gamma \rightarrow \Lambda \overline{\Sigma}^0 + \Sigma^0 \overline{\Lambda} \text{ and } \gamma\gamma \rightarrow \Sigma^0 \overline{\Sigma}^0$ reactions have been studied by the L3 Collaboration [13] for $|\cos\theta^*| < 0.6$. These reactions are identified by first reconstructing the two decay vertices $\Lambda \to p\pi^-$ and $\overline{\Lambda} \to \overline{p}\pi^+$. The Σ^0 and $\overline{\Sigma}^0$ candidates are then reconstructed by combining the selected Λ and $\overline{\Lambda}$ with photons. A maximum likelihood fit, taking the misidentification probabilities between processes into account, is performed to separate the $\Lambda \overline{\Lambda}$, $\Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0$ and $\Sigma^0 \overline{\Sigma}^0$ final states. As the $\Lambda \overline{\Sigma}^0 + \overline{\Lambda} \Sigma^0$ fraction is found to be negligible, the fit is repeated using only the $\Lambda \overline{\Lambda}$ and $\Sigma^0 \overline{\Sigma}^0$ components. The $\gamma \gamma \to \Lambda \overline{\Lambda}$ and $\gamma \gamma \to \Sigma^0 \overline{\Sigma}^0$ measurements are compared to different theoretical predictions in Fig. 3. Both measurements are well reproduced by the recent quarkdiquark calculations [12], whereas the three-quark model [5] is clearly excluded. Our data are also in agreement with the handbag model predictions [9] inside the theoretical uncertainties.

Fig. 3. a The $\gamma\gamma \to \Lambda\overline{\Lambda}$ and b the $\gamma\gamma \to \Sigma^0\overline{\Sigma}^0$ cross sections as a function of $W_{\gamma\gamma}$ compared to the three-quark [5], the quarkdiquark [12] and the handbag model predictions [9]

section enhancement near threshold, the origin of which is still not well understood. In contrast the cross section for the isospin related reaction $\rho^+\rho^-$ is shown to be small [17]. On the other hand few data involving highly off-shell virtual photons are available [16], since tagged two-photon processes have a considerably reduced rate. Recent theoretical predictions [18,19] have renewed interest for measuring $\rho\rho$ production at high Q^2 .

3.1 Exclusive $ho^0 ho^0$ and $ho^+ ho^-$ production at $Q^2\simeq 0$

The $\gamma\gamma \rightarrow \rho^0\rho^0$ and $\gamma\gamma \rightarrow \rho^+\rho^-$ reactions at $Q^2 \simeq 0$ have been studied by the L3 Collaboration via the reactions $\gamma \gamma \to \pi^+ \pi^- \pi^+ \pi^-$ and $\gamma \gamma \to \pi^+ \pi^0 \pi^- \pi^0$. Following the model proposed by TASSO [14], the signal is modeled with $\rho\rho$ production in different spin-parity and helicity states (J^P, J_z) together with an isotropic production of four pions. All states are assumed to be produced incoherently. The allowed states of a $\rho\rho$ system in quasi-real $\gamma\gamma$ reactions are: $(J^P, J_z) = 0^+, (2^+, 0), (2^+, \pm 2), 0^-$ and $(2^{-}, 0)$. A maximum likelihood fit is used to determine the contributions of the each amplitude. The preliminary results shows a dominance of the $(J^P, J_z) = (2^+, 2)$ state in both channels. The 0^+ and 0^- states give a smaller but non negligible contribution, whereas other states are found to be negligible. A broad enhancement near threshold of the $\gamma\gamma \rightarrow \rho^0 \rho^0$ cross section is observed as in previous measurements and shown in Fig. 4. In contrast, no excess is observed in the $\rho^+\rho^-$ channel. The cross section ratio $\sigma(\gamma\gamma \to \rho^0 \rho^0) / \sigma(\gamma\gamma \to \rho^+ \rho^-)$ in the range 1.2 GeV $< W_{\gamma\gamma} < 1.6 \text{ GeV}$ is thus incompatible with the hypothesis of a resonance with isospin I=0,1.

3.2 Exclusive $\rho^0 \rho^0$ production at high Q^2

3 Exclusive ρ meson pair production

Exclusive ρ meson pair production by quasi-real photons was studied by several experiments [14,15,16]. A prominent feature of the reaction $\gamma \gamma \rightarrow \rho^0 \rho^0$ is the broad cross Exclusive $\rho^0 \rho^0$ production at high Q^2 has been studied by the L3 Collaboration [20] through the reaction $e^+e^- \rightarrow \gamma\gamma^* \rightarrow e^+e^-\pi^+\pi^-\pi^+\pi^-$, where γ^* denotes a virtual photon. Events with four pions a first selected. A maximum likelihood fit using a box method [21] is then performed

Fig. 4. The $(J^P, J_z) = (2^+, 2)$ composant of the $\gamma \gamma \to \rho^0 \rho^0$ and $\gamma \gamma \to \rho^+ \rho^-$ cross sections

Fig. 5. The differential cross section $d\sigma(e^+e^- - e^+e^-\rho^0\rho^0)/dQ^2$ with the fit described in text

for each $W_{\gamma\gamma}$ and Q^2 interval to determine the number of $\rho^0 \rho^0$ events. The following non-interfering contributions are considered in the fit: $\gamma\gamma^* \to \rho^0 \rho^0$, $\gamma\gamma^* \to \rho^0 \pi^+ \pi^-$ and $\gamma\gamma^* \to \pi^+\pi^-\pi^+\pi^-$. The broad enhancement in the $\rho^0 \rho^0$ cross section near threshold at $Q^2 \simeq 0$ is also visible in the high Q^2 measurement. The differential cross section $d\sigma_{ee}/dQ^2$ is plotted in Fig. 5 together with the result of a fit to a form expected from QCD-based calculations:

$$d\sigma_{ee}/dQ^2 \propto Q^{-n}(Q^2 + \langle W_{\gamma\gamma} \rangle^2)^{-2})$$

with $\langle W_{\gamma\gamma} \rangle = 1.945$. The fit provides a good description of the Q^2 dependence of the data and gives an exponent $n = 2.4 \pm 0.3$, to be compared to the expected value n = 2. The Q^2 dependence, including the point at $Q^2 \simeq 0$, is also well described by a GVDM form factor [22] whereas a steeper decrease, excluded by the data, is expected for a simple ρ -pole form factor, as shown in Fig. 6.

Acknowledgments

We would like to thank C.F. Berger, W. Schweiger, M. Diehl and O. Teryaev for very useful discussions.

Fig. 6. The $\gamma\gamma^* \to \rho^0\rho^0$ cross section as a function of Q^2 fitted with a GDVM form factor (*solid line*) and a ρ -pole form factor (*dotted line*)

References

- S.J. Brodsky and J.P. Lepage: Phys. Rev. D 22, 2157 (1980)
- ALEPH Coll., A. Heister et al.: Nucl. Phys. B 569, 140 (2003)
- 3. TPC/2 γ Coll., A. Aihara et al.: Phys. Rev. Lett. 57, 404 (1986)
- M. Diehl, P. Kroll, and C. Vogt: Phys. Lett. B 532, 99 (2002)
- G. Farrar, E. Maina, and F. Neri: Nucl. Phys. B 259, 702 (1985); Nucl. Phys. B 263, 746 (1986)
- 6. D. Millers and J.F. Gunion: Phys. Rev. D 34, 2657 (1986)
- 7. ARGUS, H. Albrecht et al.: Z. Phys. C **42**, 543 (1989) and references therein
- M. Anselmino et al.: Int. Jour. Mod. Phys. A 4, 5213 (1989)
- M. Diehl, P. Kroll, and C. Vogt: Eur. Phys. J. C 26, 567 (2003)
- 10. L3 Coll., P. Achard et al.: CERN-EP/2003-013
- OPAL Coll., G. Abbiendi et al.: Eur. Phys. J. C 28, (2003) 45
- C.F. Berger, B. Lechner, and W. Schweiger: Fizika B 8, 371 (1999); C.F. Berger and W. Schweiger: hep-ph/0212066
- 13. L3 Coll., P. Achard et al.: Phys. Lett. B 536, 24 (2002)
- 14. TASSO Coll., M. Althoff et al.: Z. Phys. C 16, 13 (1982)
- ARGUS Coll., H. Albrecht et al.: Z. Phys. C 50, 1 (1991) and references therein
- PLUTO Coll., C. Berger et al.: Z. Phys. C 38, 521 (1988); TPC/2γ Coll., H. Aihara et al.: Phys. Rev. D 37, 28 (1988);
 TACCO C H. W. D. L. L. L. Z. Phys. C 41, 252

TASSO Coll., W. Braunschweig et al.: Z. Phys. C **41**, 353 (1988)

- ARGUS Coll., H. Albrecht et al.: Phys. Lett. B 217, 217 (1989) Phys. Lett. B 267 (1991) 535.
- M. Diehl, T. Gousset, and B. Pire: Phys. Rev. D 62, (2000) 073014
- 19. I.V. Anikin, B. Pire, and O.V. Teryaev, hep-ph/0307059
- 20. L3 Coll., P. Achard et al.: CERN-EP/2003-020
- D.M. Schmidt, R.J. Morrison, and M.S. Witherell: Nucl. Instr. Meth. A 328, 547 (1993)
- 22. J.J. Sakurai and D. Schildknecht: Phys. Lett. B 40, 121 (1972)